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Lie algebra and the quantisation of momenta and the 
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Department of Theoretical Physics, School of Physical Sciences, St. Andrews University, 
North Haugh, St. Andrews, Fife, UK 
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Abstract. A common assumption that quantisation is simply a representation of the Lie 
algebra of classical observables by a Lie algebra of self-adjoint operators in Hilbert space is 
shown to be generally invalid. 

1. Introduction 

Let the classical configuration space M be an N-dimensional Riemannian manifold 
with metric g"". The phase space is then the contangent bundle T*M. If x i  is a 
coordinate system in M, T*M may be coordinated by ( x i , p i ) ,  p i  being generalised 
momenta. We shall confine ourselves to classical momentum observables of the form 
P = q i ( x ) p , .  The set {P}  of all such P is a Lie algebra with respect to the Poisson bracket 
operation. The question then arises as to whether there exists a representation of {P} by 
a Lie algebra {P} of self-adjoint operators P in an appropriate Hilbert space X. An 
affirmative answer commonly assumed would mean that the quantisation of {P} is 
simply a representation of {P} by {P} in X. (Hermann 1966,1970; Bloore and Ghobrial 
1975). However we shall show that the question posed has the negative answer. 
Consequently the above idea of quantisation is not generally valid. 

2. Lie algebra and the quantisation of momenta 

Our starting point is Mackey's method of quantisation (Mackey 1963). In a recent 
paper (Wan and Viazminsky 1977), hereafter called I, Mackey's method is explained 
and applied to the quantisation in spaces of constant curvature. The scheme begins with 
the well-known link between the function P = qbi on T*M and the vector field 
V = v i a / d x i  on M, a result established in the theory of differentiable manifolds (Loomis 
and Sternberg 1968). This link enables us to classify P according to whether its 
associated vector field is complete. Let us write {P} = {P}, U {P},, where {P}= is the set of 
P whose associated vector fields are complete and {P}, denotes the rest of P in {P}. 
Every P in {P}c generates a one-parameter group (OPG for short) of transformations of 
M. Moreover an OPG of M induces an OPG U of unitary transformations of the set 
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L 2 ( M )  of square-integrable 
the generator P of U. P is 
L z ( M ) .  Explicitly (Mackey 

functions on M. On quantisation P is assumed to go over to 
automatically a self-adjoint operator in the Hilbert space 
1963, Wan and Viazminsky 1977) 

P =  - ih(V+$div V) 

with domain 

Dp={f : fE  C ' ( M ) ; f ,  PfEL2(M)}. 

Here div V is the divergence of V and V is the vector field associated with P, i.e. 
P = q'pl and V = q'a/ax'. The important observation is that P with domain C r  ( M )  is 
essentially self-adjoint if and only if V is a complete vector field (Wan and McFarlane 
1979, Mackey 1963, Wan and Viazminsky 1977). Consequently only P in {P}c are 
quantisable. 

We now come to see whether {P} constitutes a Lie algebra under Poisson bracket 
operation. Let P1 = q;l)pI and Pa = ~ ; ~ , p ~  be members of {P}=. Their Poisson bracket is 
then 

P3 = P l ,  Pz} = T;3)Plr 

77i3) = 77;1j,,77i2) - 77h? ;z ) . , .  

where 

A necessary condition for {P}c to form a Lie algebra is that P3 so obtained must belong 
to {P}c. In  other words, the associated vector field V3 = T ; ~ )  a/ax' must be complete. 
On the other hand V3 is seen to be just the Lie bracket of 

Vz = 77;2)a/ax' and V1 = ~ ; ~ ) d / a x ' ,  i.e. V3 = -[ V1, VJ. 

Therefore the problem reduces to the completeness of the Lie bracket of two given 
complete vector fields V1, VZ. The simple answer to this is that the Lie bracket of two 
complete vector fields is not necessarily complete (Brickell and Clark 1970). 
Consequently {P}c is not a Lie algebra; neither is the corresponding set of quantised 
momenta {P} under commutator bracket operation. This shows that the idea of Lie 
algebra as a general framework for quantisation is not a valid one. {P}  being a Lie 
algebra is not particularly significant since not every P in {P}  is quantisable. The 
exception is when M is compact, e.g. a space of positive constant curvature like a 
sphere. Every vector field on a compact manifold is complete (Brickell and Clark 
1970). As a result a Lie algebra quantisation scheme may be carried through. But again 
this is not of fundamental significance since most configuration manifolds of interest 
including spaces of zero or negative constant curvature are non-compact. 

We now examine whether the idea of Lie algebra has any role to play at all. Let the 
configuration space M be an N-dimensional space of constant curvature K on which 
there are t N ( N  + 1) linearly independent complete Killing vector fields Vc,) = &,a/ax' 
generating a $N(N + 1)-parameter group of motions of M. The curvature K may be 
positive, zero or negative. Let 

{v}k ={V: V=AwV(w),Aw=real},  

{ P } k  = {P: P = ~ ' p , ,  v = ('a/ax' E { v}k}, 

{P}k = {P: P = - ihL'a/ax', V = S'a/ax' E { v}k}. 

In other words, { V}, which consists of all linear combinations of V(*) is the set of all 
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Killing vector fields. Under our assumption every V in { v } k  is complete. { P } k  is the set 
of classical momenta associated with { v } k ,  {P}k is the set of corresponding quantised 
momenta. Observe that the divergence of a Killing vector field vanishes. The Lie 
bracket of two Killing vector fields is again a Killing vector field. Linear combinations 
of two Killing vector fields are also Killing vector fields. Hence { V } k  constitutes a Lie 
algebra (Matsushima 1972). Since there is a one-one and onto map between { v } k ,  { P } k  

and { P } k  we can endow the same Lie algebra structure to { P } k  and { P } k . f  Therefore we 
may say that a Lie algebra approach to quantisation is profitable if it is coupled with 
symmetry considerations. Only those momentum observables associated with certain 
geometric symmetry of the configuration space form a Lie algebra classically and 
quantum mechanically. 

3. Lie algebra and the quantisation of the Hamiltonian 

In I a scheme for the determination of the quantised Hamiltonian H was introduced. 
The scheme may now be rephrased in the language of Lie algebra. A close examination 
of I shows that the H is essentially a quadratic Casimir operator C of the Lie algebra 
{ P } k .  General expressions may be worked out explicitly. Let us employ the coordinate 
system x i  in M in terms of which the metric takes the form (Eisenhart 1964) 

dSZ =dx '  dx' /( l  + $ K x ' x ' ) ~ .  

We shall consider spaces of constant curvature K only and in such spaces the above 
coordinates exist. A set of $ N ( N  + 1) independent Killing vector fields is 

L, = ( $ K [ ~ ( X ' ) ~ - X ~ X ~ ] +  1) a lax '  + & x 1 ( x f  -XIS:) a/axf,  
L,, = X I  a l a d  -,da/ax' ( i  < j ) .  

In the above expression for L, summation over j only is implied, i.e. no summation over 
i is meant. Sl is the Kronecker delta. The vector fields L,, L,, satisfy the following Lie 
bracket relations: (Robertson and Noonan 1968) 

[LI, L,1= - KL,,, 

[Ll, L1,I = L,, 

[Ld, Lc 1 = L,, 

(no summation over i )  

(no summation over I )  

These expressions are valid whether or not i < j ,  i < I ,  1 < j if we make the identification 
L,, = -L,, when i < j .  The rest Lie brackets not derivable from these expressions are all 
zero. We have now obtained an explicit Lie algebra. The usual procedure may be set in 
motion to construct a quadratic Casimir operator Cv in terms of the structure constants 
available (Fonda and Ghirardi 1970). In what follows let the indices i, j ,  k, I ,  m, n run 
from 1 to N and let the indices r, s, r run from N + 1 to $N(N + 1). Now relabel L,, L,, 

t Let V,(i = 1 ,2 ,3 ,  . . .)E { V } ,  and let their associated classical momenta and quantised momenta be Pt, Pi 
respectively. Then [VI, Vz] = V, implies {PI, Pz} = -&, [PI, P2] = -ihP3. This leads to the fact that the 
bracket operations do not appear to preserve the Lie algebra structure of { V } k ,  {P},, {P}k. But this is merely a 
technicality which may be solved by suitable modifications of the bracket operations. For example, we can 
employ new bracket operations defined by {Pl, Pz}' = -{Pl, P2}, [Pl, P2]' = [PI, Pz]/(-ih). From now on we 
shall adopt these modified brackets. 
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as V(&), p = 1, 2, . . . , f N ( N  + l), by 

v(,J = L,, V(r) = Lm,, 

where m < n and r = Nm - & z ( m  + 1) + n. This is equivalent to the ordering of Li, L,, 
as 

L1, 9 * . 1 LN, L12, * - . 9 L I N ,  L 2 3 , .  9 * 7 L2N9.. 1 ,  L[N-ljN. 
Notice that there is a one-one correspondence between r and m, n. Rewriting the Lie 
bracket relations in the form 

[ v ( w J ,  v(v11 = c i v v ( A J ,  p, u,A = 1 , 2 , .  . . , $ N ( N + 1 )  

C i v  are then the structure constants. There are only a few types of C i v  which do not 
vanish. They are 

C:, = C~,”’”’ = - K67” + KS;”, 

c:, = C;;Jn),k,) = s;;j - s;;k + 8;;; - 8;;; +a,“,:: -a;:, 

a y n  = sys;, a;;, = s;s;s;. 

c:, 3 = a;, - S L ,  

where 

Apart from those derivable from the above non-vanishing constants the rest structure 
constants are all zero. Now let 

G,, = C;&L 
then 

+ N +  

Since det/G,,/ f 0 (for the case K f 0) we can define G”“  by 

G”“G,, = 2 r. 
The result is 

G ” ” =  l /Gwu if p = U ,  G ” ” = O  if p f u .  

Hence a Casimir operator Cv is 

C V = G ” ” V ( w ) V , L . l =  - [ 2 ( N - l ) ] - ’ ( K - ’ c  L : + c  Lt ) .  
I j < /  

We have [ V(&J ,  CV] = 0 for every V(&,. For a space of positive constant curvature C,  is 
the total angular momentum square apart from a multiplicative constant (Popov and 
Perelomov 1968). 

An identical analysis on the algebras {P}k and {P}k shows that 

C = G ” ” p ~ J ’ ~ v j ,  C = G ” ” P ( w ~ P ~ V )  
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are Casimir operators of and {P}k respectively. Here P(LI) ,  P(@) are respectively the 
classical and quantised momenta corresponding to V(w) .  In accordance with our scheme 
in I we conclude that the classical Hamiltonian H and its quantum counterpart H are 
simply C and C respectively apart from a multiplicative constant. To be precise we have 

H = ~ ~ - I  g l i  p i p j  = m-'K(l -N)GLIUP(w)P(V), 

H = - h 2 / 2 m  V2 = m - ' K ( l -  N)G""P(,,P(,). 

In terms of Casimir operators 

R 
H = m-'K(l-  N)C  = -C, 

R 
H = m - ' K ( l - N ) C = - C ,  

mN mN 

where R = KN(1- N) is the curvature invariant (Synge and Schild 1966). The striking 
similarity between H and H is most gratifying. 

4. Conclusion 

The idea of Lie algebra is seen to play a significant role in quantisation especially in the 
construction of the Hamiltonian when the configuration space possesses geometry 
symmetry. But this should not blind us to the other conclusion that Lie algebra as 
described is not a basis for a general formulation of the problem of quantisation. 

Acknowledgments 

K K Wan thanks Professors W P Alford, S C R Dennis, G A Pearce and J Bub for their 
generous hospitality during his visit to the University of Western Ontario, and also 
wishes to express his appreciation of a British Council travel grant and of financial 
support provided by Professors W P Alford and S C R Dennis. Cesar Viazminsky has 
benefited from discussions with Dr J F Cornwell. 

References 

Bloore F J and Ghobrial I R 1975 J.  Phys. A:  Math. Gen. 8 1863 
Brickell F and Clark R S 1970 Differentiable Manifolds (New York: Van Nostrand Reinhold) p 139 
Eisenhart L P 1964 Riemannian Geometry (Princeton: Princeton University Press) p 85 
Fonda L and Ghirardi G C 1970 Symmetry Principles in Quantum Physics (New York: Dekker Inc) 
Hermann R 1966 Lie Groups for Physicisrs (Menlo Park, CA: Benjamin) pp 132-43 
- 1970 Lie Algebras and Quantum Mechanics (Menlo Park, CA: Benjamin) pp 7-1 1 
Loomis L H and Sternberg S 1968 Advanced Calculus (Reading, MA: Addison-Wesley) pp 517-20 
Mackey G W 1963 The Mathematical Foundations of Quantum Mechanics (Menlo Park, CA: Benjamin) pp 

Matsushima Y 1972 Diflerentiable Manifolds (New York: Dekker) p 91 
Popov V S and Perelomov A M 1968 Sou. J. Nucl. Phys. 7 290 
Robertson H P and Noonan T W 1968 Relativity and Cosmology (London: Saunders) p 326 
Synge J L and Schild A 1966 Tensor Calculus (Toronto: University of Toronto Press) p 113 
Wan K-K and McFarlane K 1979 to be published 
Wan K-K and Viazminsky C 1977 Prog. Theor. Phys. 58 1030 

10-29, 100-4 


